US009082406B2

a2 United States Patent

Shen et al.

US 9,082,406 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR EXTENDING
DIALOG SYSTEMS TO PROCESS COMPLEX
ACTIVITIES FOR APPLICATIONS

(75) Inventors: Zhongnan Shen, Goleta, CA (US);

Fuliang Weng, Mountain View, CA

(US); Yao Meng, San Jose, CA (US);

Madhuri Raya, Sunnyvale, CA (US)
(73) ROBERT BOSCH LLC, Broadview, IL
(US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2079 days.

Notice:

")

1) 11/607,497

(22)

Appl. No.:
Filed: Nov. 30, 2006

Prior Publication Data

US 2008/0134058 A1 Jun. 5, 2008

(65)

Int. CL.
GI0L 21/00
GI0L 25/00
GI0L 15/22
U.S. CL
CPC GI0L 15/22 (2013.01)
Field of Classification Search

USPC 704/270, 275, 257
See application file for complete search history.

(51)
(2013.01)
(2013.01)
(2006.01)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

5,802,526 A *
6,073,102 A *

9/1998
6/2000

379/88.13
704/275

Fawecett et al.
Block

6,604,075 B1* 82003 Brownetal. . 704/270.1
6,707,889 B1* 3/2004 Sayloretal. ... 379/88.04
7,114,146 B2* 9/2006 Zhangetal. 717/106

100

N

7,216,073 B2* 52007 Lavietal.ceen 704/9
7,257,537 B2* 82007 Rossetal. 704/270
7,386,440 B2* 6/2008 Balchandran et al. 704/9
7,457,397 B1* 112008 Sayloretal. 379/88.17
8,566,102 B1* 10/2013 Bangalore etal. 704/270.1
2001/0013001 Al* 82001 Brown etal. 704/270.1
2002/0087310 Al1* 7/2002 Leeetal. . .. 704/251
2002/0133355 Al* 9/2002 Rossetal. 704/275
2003/0061029 Al 3/2003 Shaket
2004/0044516 Al* 3/2004 Kennewicketal. 704/5
2005/0246174 Al* 11/2005 DeGoliacccocoevn. 704/270
2006/0074670 Al 4/2006 Weng et al.
2007/0135101 Al* 6/2007 Ramatietal. 455/414.1

FOREIGN PATENT DOCUMENTS

EP 1315 147 5/2003

EP 1585042 10/2005

WO WO02006036328 4/2006
OTHER PUBLICATIONS

HTML 4.01 SpecificationW3C Recommendation Dec. 24, 1999
http://’www.w3.0org/ TR/REC-html40/interact/scripts.html: 18.1
Introduction to scripts.*

(Continued)

Primary Examiner — Shaun Roberts
(74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP

(57) ABSTRACT

A dialog system that includes a dialog manager to manage a
conversation between the dialog system and a user, and to
associate the conversation with a complex activity, and a plan
engine to execute a plan script in connection with the complex
activity, the plan script including a set of atomic dialog activi-
ties and logic to control a data and sequence flow of the atomic
dialog activities, the set of atomic dialog activities being
sub-activities of the complex activity, the complex activity
being specified via a declarative activity specification lan-
guage that connects the atomic dialog activities with a pro-
cess.

35 Claims, 8 Drawing Sheets

101a

Extended Dialog Manager (DM*)

Dialog Plan BPEL Service :
Manager Engine Engine Pool ;
101aa 101ab) 102a 102b i
i i
103 8104
- B
Plan Script* BPEL Script

US 9,082,406 B2

Page 2
(56) References Cited “CapeStudio 3 Technical Overview” Internet Citation, online
Mar. 2002, www.capeclear.com/products/whitepapers/CSTTech-
OTHER PUBLICATIONS nicalOverview.pdf.

European Search Report for EP 07021369.9-2221, Date Feb. 29,
2008. * cited by examiner

US 9,082,406 B2

Sheet 1 of 8

Jul. 14, 2015

U.S. Patent

qcol

[ood
90IAIOS

-

[231
yduog 14dd Aduog uefq

% .

701 m ¢01 m
2701 " qT01 BET01
suidug surdug I 1Seuepy
1ddg | ue[d Sorerq

w (LINQ) 1e8euey Fo[RIQ PapUAIXT]

elo0l

~

001

US 9,082,406 B2

Sheet 2 of 8

Jul. 14, 2015

U.S. Patent

zangy
Sui38o |e
< surdus yse)
< 10§ Sa[qeLIe
9911 3ngag | 3 SSIGEHEA
uoissag |
SOIAIOS sogessaN YorlS uonsanQ) 29 1oday -
/ouidug Ayanoy /WA
19d9 | — surdug |_, » YOBIS |]
1449 woy s19jowered
anan() adessaN 901AI0S

00¢

US 9,082,406 B2

Sheet 3 of 8

Jul. 14, 2015

U.S. Patent

¢ aIng1g
voe aseqeie
[70¢
$0E 1ot s
aseqele(q
i ,I suiduyg IoSeuey
T 004 suidug ueld 3oreq
9SEqEIEQ o91A10g 1ddd
vOL aseqeie Io3eue So[eI(] PIPUAXY

00¢

10¢

US 9,082,406 B2

Sheet 4 of 8

Jul. 14, 2015

U.S. Patent

2131
5012 yov
901] SngaQq (auidua yse)
8 (L | 105 soiqewrep
© >
< oy (€
uoISSag op OBIS LN
90IAIOS 05 a
/ouidug ourdus T4dd UOIRY g /N
Tdd4d e woy sagessowl (s (¢ | Na woy siise) a a
JoJ anang) IINQ 10F 3088
€0£/20¢ \
q1o¢ v/
00t

el0¢

US 9,082,406 B2

Sheet 5 of 8

Jul. 14, 2015

U.S. Patent

£0¢

G a3

[ood
90IAIS

(€

o8l
1AnoY

(2

v0S

ananQ)
a3esso IndinQ

©

£0¢

outdus add
10 Sa[qeLIe A

A

¢4

10§

ananQ)
a8essoA Indug

(s

A

c0¢

(I

auidug
Ase]

00$

qlog

US 9,082,406 B2

Sheet 6 of 8

Jul. 14, 2015

U.S. Patent

9 2IN31,]

<S3u0s mau ay) Aejd/A1onb ued 198N 2y} pue ‘A[[ed1ureukp pajepdn st aseqejep Suos oY > STUOS MOU 7 9ABY NO & :WSISAS
<SEJIN Sururejuod 921A3p [euI9)xs ul s3njd 1osn>

<syherd

& Suidyure]o 'sa isijAejd e 0) Suos & Suippe yim papeanyi-nnA> dwnaAL(g 1s1jAerd o1 Suryrou 1of louow pappe VO WSS
QWAL 01)1 PPV 195}

240043 2Y] S1 240] PUB 2421]2q ‘UODUIGUIOD (W)SAS

(OWIIDALL(] UO S JRYA 198}

<uonen3iquiesi(I> ‘SSUOSHIOA\ PUB SWIDALI(T ARY | ;juedawl nok op IstjAe[d YoIyAy (WDSAS

1s1iferd e 01 sy ppy :1asn)

<peaisul Sutyiou 40f louow Suiked sueIs> (WANSAS

‘Suryiou 40f Aovow JueaW | 1198

<Aomp 4pf os Suike[d speIS> (UIRISAS

<pa1s1| Buraq Suos oy se _Jey),, SUIA[oSOY> ‘1Y) Aeld :(Sundnuojur) 19sny

““Avmp anf os ‘Buiyiou 40f Aouows ‘SuLID U1 S12Y104q ‘Ai10M AYym ‘pliom auo SUOS Y} Sey SULTY Ul SIOY)oIg Wo)SAS
(SULAY Ul SA42Yy3048 UO 1B STU0S JBYM [Jas[)

<oseqyd SnonunuoSY(J> “SULLY U] SA2Y104g WISAS

(SHenS 211 Aq 9AeY NOA Op swngje jJeyp 119s)

<uoneuLIojul Juspuadap 1x91u00 SUILINQ)> “SIDAIS 2.41(] (WISAS

(S1YI ST oYM -Jos()

<UOT)O3[3S DISNW WOpPULI & SA[J :I01ARYSY WISASS pliom auo Juos ay) S 219 O ‘WNSAS

")001 WOS JNOGE JBYM 113S[}

<sawreu A103910 Suis()> "o1snw [nos pue 001 ‘dod aaey [:wdsAg

{BABY NOA Op JIsnul JeYM 1198}

:uonesrdde ¢qIN © Jo 1x2)u00 oY) ul 1oSeuew SO[BIp B JO SANI[EUONOUNJ PUE SOINJBOJ TR sajenisny|l So[e1p Sumo|oy oy,

US 9,082,406 B2

Sheet 7 of 8

Jul. 14, 2015

U.S. Patent

‘GHEZ 10 81 Jsownu Bupjoel] “puncib $dn eia peddiys
St) ueop ¢'61 8bieyd je1o) ‘peledwod ussq Sey I8P INOA MO %OIO

son BB
£pee204d 0] Juem NOA O “BIUIOJIET ‘Ol OBd *"8AY BPUBIIN 600 S! I._
ssalppe Bulddius #Sz 1 Ulim Buipus pied esiA S JusWwided JnoA Jeyop £
Buiddiyg "sejjop §'zZ1 ‘enanag wngly “Japio JNoA Jo AlBWILINS SY) SI I9H MN@OIO

‘SOA g '_

LPezL uim Buipus paed esia anod Aq Aed o} juem nof oQ %“OIA

~/

b

*J8pJ0 nok 10} Buiddiys piepues exe) [ImM oA O mw@ |~
40 s! Buiddiys prepuels 'oN §ig —

L am31g

Jaones Aep Jxeu ypim Buiddiys winiuaad a1 nok pinopa %OIO

‘SN % —

ERILIOED "Ol|Y Ojed "8AY EPUBIIA 600 O) diys O} uem nok og EEO—O

"SOA @ '_

N Ang 0] Juem NOA O(] "9|qBJIBAR SI WY SIY) %

‘sABlag WNGe ay) Ang o) Juem |
"eloud Jnok punoy | “afieyoIN H 5 J

ooy we | H T8

sel] enropy Bojeig 5

US 9,082,406 B2

Sheet 8 of 8

Jul. 14, 2015

U.S. Patent

g aIngiyg

uorjoe sjeudordde ue SuruLiojiog

/)

$08S

Ayanoe xo[dwoo oy} Yim uorosuuod ut jduos ueld e Sunnoaxg

y 3
£08S

Ayanoe xo[dwoo & Y)Im UOIBSIOAUOD o) SUNRIO0SSY

T08S

Uo11esI9AU0) & JuiSeuey

108S

008

US 9,082,406 B2

1
METHOD AND SYSTEM FOR EXTENDING
DIALOG SYSTEMS TO PROCESS COMPLEX
ACTIVITIES FOR APPLICATIONS

FIELD OF THE INVENTION

The present invention relates to a method and system for
extending dialog systems to process complex activities for
applications, such as web services and business transactions.

BACKGROUND INFORMATION

Dialog systems may enhance customer experiences and
provide better functionality in various applications. Dialog
systems, however, have not been adequately utilized for cer-
tain sophisticated applications, such as web services, and
self-service centers.

SUMMARY OF THE INVENTION

The present invention involves the integration of language
dialog applications with simple and/or sophisticated pro-
cesses to provide a self-service platform which can drive new
business opportunities. In particular, the dialog applications
may be integrated with business processes in a service-ori-
ented architecture (SOA) across distributed enterprises.

An exemplary embodiment and/or exemplary method
according to the present invention may provide support for
complex dialog activities for dialog systems, and may better
integrate a dialog system with a process backend. In particu-
lar, the exemplary embodiment and/or exemplary method
may extend the use of dialog systems for a broader range of
applications, such as web services, business transactions, etc.
In this regard, the exemplary embodiment and/or exemplary
method of the present invention is directed toward extending
the dialog management capabilities of the system with
respect to its dialog manager. The role of the dialog manager
in the dialog system is essentially to interpret semantically
incoming user requests and utterances, and perform the
appropriate actions on the devices controlled by the dialog
system, as well as to generate an appropriate output, such as
answers to queries or requests for clarification.

According to an exemplary embodiment of the present
invention, an extended dialog manger (DM+) is provided
with the functionalities to connect users to various sophisti-
cated processes in a process backend, which may improve the
usability of the dialog system and speed up the market accep-
tance of the dialog system. In this regard, extending the dialog
manager may also provide opportunities for business collabo-
ration and additional revenues for enterprises which already
invest in speech applications.

According to an exemplary embodiment of the present
invention, a dialog system is integrated with a sophisticated
process, in a layered system architecture manner. In particu-
lar, the dialog manager (DM) of the dialog system is extended
to include a plan engine, which facilitates the reusability of
the dialog system in a broader range of business models. In
this regard, extending the dialog manager (DM) to include a
plan engine may also facilitate the connection of the propri-
etary and atomic actions of the dialog manager (DM) with
standard and complex processes, which conform, for
example, to BPEL4WS (Business Process Execution Lan-
guage for Web Services), or with other standards, such as
VoiceXML (Voice Extended Markup Language).

According to an exemplary embodiment and/or exemplary
method of the present invention, a declarative activity speci-
fication language is provided to specify a complex activity,

10

15

20

25

30

35

40

45

50

55

60

65

2

which connects previously developed atomic actions of the
dialog manager (DM) with sophisticated processes, includ-
ing, for example, complex business processes, such as those
conforming to BPEL4WS (Business Process Execution Lan-
guage for Web Services). In particular, external configuration
scripts are used to update plans and processes thereby pro-
viding a more flexible system. Additionally, the exemplary
dialog system may more easily be ported to new domains, and
adding new applications and switching complex processes
are all made simpler by writing scripts.

An exemplary embodiment of the present invention is
directed to a dialog system, which includes a dialog manager
to manage a conversation between the dialog system and a
user, and to associate the conversation with a complex activ-
ity, and a plan engine to execute a plan script in connection
with the complex activity, the plan script including a set of
atomic dialog activities and logic to control a data and
sequence flow of the atomic dialog activities, the set of atomic
dialog activities being sub-activities of the complex activity,
the complex activity being specified via a declarative activity
specification language that connects the atomic dialog activi-
ties with a process.

Another exemplary embodiment of the present invention is
directed to a dialog system, in which the process is related to
at least one of a web service and a business process.

Yet another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the plan engine is
configured to interact with a process engine that executes a
process script in connection with the process, the process
script including a set of atomic process activities and corre-
sponding order constraints of the atomic process activities,
the set of atomic process activities being sub-activities of the
process.

Still another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the process script
conforms to a standard XMI -based language designed to
accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services.

Yet another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the process script
conforms to BPEL4WS (Business Process Execution Lan-
guage for Web Services).

Still another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the dialog man-
ager is configured to interpret semantically incoming user
requests and utterances, and perform an appropriate action on
a device controlled by the dialog system.

Yet another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the dialog man-
ager is configured to maintain a history and current context of
the conversation.

Still another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the dialog man-
ager maintains the history and current context via a structure
to store the atomic dialog activities as conversational threads.

Yet another exemplary embodiment of the present inven-
tion is directed to a dialog system, in which the dialog man-
ager is configured to at least one of provide a report to a user,
ask a question, and obtain a parameter value from the user.

Still another exemplary embodiment of the present inven-
tion is directed to a dialog system, which includes a dialog
manager to manage a conversation between the dialog system
and a user, and to associate the conversation with a complex
activity, the dialog manager being configured to interpret
semantically incoming user requests and utterances, and per-
form an appropriate action on a device controlled by the

US 9,082,406 B2

3

dialog system, and a plan engine to execute a plan script in
connection with the complex activity, the plan script includ-
ing a set of atomic dialog activities and logic to control a data
and sequence flow of the atomic dialog activities, the set of
atomic dialog activities being sub-activities of the complex
activity, the atomic dialog activities being stored as conver-
sation threads, the complex activity being specified via a
declarative activity specification language that connects the
atomic dialog activities with a process related to at least one
of'a web service and a business process, and the plan engine
being configured to interact with a process engine that
executes a process script in connection with the process, the
process script including a set of atomic process activities and
corresponding order constraints of the atomic process activi-
ties, the set of atomic process activities being sub-activities of
the process, the process script conforming to BPEL4AWS
(Business Process Execution Language for Web Services).

An exemplary embodiment of the present invention is
directed to a method for extending a dialog system to process
application activities, the method including managing a con-
versation between the dialog system and a user, and to asso-
ciate the conversation with a complex activity, and executing
aplan script in connection with the complex activity, the plan
script including a set of atomic dialog activities and logic to
control a data and sequence flow of the atomic dialog activi-
ties, the set of atomic dialog activities being sub-activities of
the complex activity, the complex activity being specified via
a declarative activity specification language that connects the
atomic dialog activities with a process.

Another exemplary embodiment of the present invention is
directed to a method for extending a dialog system to process
application activities, in which the process is related to at least
one of a web service and a business process.

Yet another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, in which the plan script is
executed in conjunction with a process script that is executed
in connection with the process, the process script including a
set of atomic process activities and corresponding order con-
straints of the atomic process activities, the set of atomic
process activities being sub-activities of the process.

Still another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, in which the process script
conforms to a standard XMI -based language designed to
accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services.

Yet another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, in which the process script
conforms to BPEL4AWS (Business Process Execution Lan-
guage for Web Services).

Still another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, the method including semanti-
cally interpreting incoming user requests and utterances, and
performing an appropriate action on a device.

Yet another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, the method including main-
taining a history and a current context of the conversation.

Still another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, the method including storing
the atomic dialog activities as conversational threads.

30

40

45

4

Yet another exemplary embodiment of the present inven-
tion is directed to a method for extending a dialog system to
process application activities, in which at least one of provid-
ing a report to a user, asking a question, and obtaining a
parameter value from the user.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary system architecture according
to the present invention.

FIG. 2 shows an exemplary plan engine design, which
shows the interaction between the plan engine and the dialog
manager (DM)/dialog move tree (DMT), and between the
plan engine and the process engine.

FIG. 3 shows an exemplary system framework of the
present invention, in which a dialog manager (DM) is
extended to handle complex business processes.

FIG. 4 shows an exemplary internal architecture of the plan
engine of FIG. 3.

FIG. 5 shows an exemplary internal architecture of the
process engine of FIG. 3.

FIG. 6 is a short dialog illustrating certain features and
functionalities of a dialog manager in the context of a MP3
application.

FIG. 7 shows an exemplary embodiment of a dialog move
tree (DMT).

FIG. 8 shows an exemplary method for extending a dialog
system to process application activities, such as a web service
and/or business transaction.

DETAILED DESCRIPTION

As discussed, for example, in co-pending U.S. patent
application Ser. No. 10/952,069 entitled “Method And Sys-
tem For Interactive Conversational Dialogue For Cognitively
Overloaded Device Users”, filed Sep. 27, 2004, the disclosure
of'which is incorporated by reference in its entirety, a conver-
sational dialog system may handle a “natural conversion”
interaction between the user and the system. According to an
exemplary embodiment and/or exemplary method of the
present invention, a conversational dialog system is extended,
particularly with respect to the dialog manager (DM), to
handle complex dialog activities required from various
sophisticated applications such as business processes. In this
regard, the following are provided: a definition language for
plan script that specifies the complex activities the dialog
system is required to process; and a plan engine that executes
the activities based on description in the plan script and con-
nects the activities with the process backend.

Definitions

An “activity” is a reusable behavior within a domain. In
this regard, an “atomic activity” is a conceptually simple
activity which cannot be further divided into sub-activities,
and a “complicated activity” is a conceptually complex activ-
ity which can be further divided into sub-activities.

A “process” is a naturally occurring or designed sequence
of changes of properties/attributes of a system. In this regard,
a “business process” is a description of the tasks and out-
comes associated with a business activity. In this regard, a
business process specifies the potential execution order of
operations from a collection of services and the collaboration
among multiple partners. Accordingly, the business process is
often drawn, depicting tasks, roles, resources and actions to
be taken according to the business needs.

A “plan script” is a file in which the presentation logic of a
complex task/application is defined. A plan script may con-
tain a set of atomic activities, data flow and control flow of

US 9,082,406 B2

5

these activities, the controlling logic of user-system conver-
sations, and the controlling logic of service invocations. In
this regard, a plan script may also be used to describe dialog
activities people perform to reach certain dialog goals, known
as dialog strategies. Such examples may include clarification
dialog strategies and error recovery dialog strategies. A “plan
engine” executes activities in a plan script.

A “process script” is a file in which the application logic of
a complex task/application is defined. A process script con-
sists of a set of atomic activities and order constraints on these
activities. A process script may conform to a process execu-
tion language, such as BPEL4WS (Business Process Execu-
tion Language for Web Services), which is a standard XML-
based language designed to accomplish tasks across multiple
organizations in a distributed computing environment using a
combination of Web services. A process script may also con-
form to a workflow (scientific or otherwise), or programming
language. A “process engine” executes activities in a process
script.

A “dialog manager” manages the interaction of a conver-
sation between the user and the system. A purpose of the
dialog manager is essentially to interpret semantically incom-
ing user requests and utterances, and perform the appropriate
actions on the devices controlled by the dialog system, such as
playing a requested song on an MP3 player or searching a
restaurant database to match a user’s request. Dialog man-
agement also involves managing the interaction between the
user and system, and generating appropriate output, such as
answers to queries or requests for clarification. In this regard,
the dialog manager maintains the history and current context
of a dialog, and performs tasks such as resolving NPs (i.e.
anaphors such as “it” and object descriptions such as “the next
intersection”), handling partial sentence fragments (e.g.
“here?”), constructing responses to questions from the user,
and generally interpreting any user utterances and requests in
context. Examples of these capabilities can be found in the
sample dialog of FIG. 6. Handling such features is important
because they occur in natural dialog. Accordingly, the dialog
manager allows the users to speak more naturally, without
having to plan carefully what they say.

A “dialog move tree (DMT)” is a tree that represents the
structure of a dialog by way of conversational threads, which
are composed of the dialog moves (a.k.a., atomic dialog
actions or activities) of both participants, and their relations.
Hence, the dialog move tree (DMT) provides a structured
history of dialog moves and conversational threads, as well as
a list of the active nodes of the tree.

A “dialog move tree (DMT) script” defines an atomic
dialog move, action or activity. As compared to the plan
script, which defines the conversation logic at the application
level, the dialog move tree (DMT) script defines the conver-
sation logic at a lower (atomic) level. In other words, the plan
script organizes the atomic activities defined by dialog move
tree (DMT) scripts in a structured way and at a higher level.
That is, the plan script may define a high level complex dialog
strategy and manage multiple dialog sessions while the dialog
move tree (DMT) script may define atomic activities for a
single dialog session.

System Architecture

FIG. 1 shows an exemplary system architecture 100
according to the present invention. The exemplary system
architecture 100 includes a dialog system 101 and a process
backend 102. The dialog system 101 includes an extended
dialog manager 101a, which in turn includes a dialog man-
ager module 101aa and a plan engine 101ab. The process
backend 102 includes a process engine 102a and a service
pool 1025.

25

40

45

50

6
Dialog Manager (DM)

The dialog manager (DM) module 101aa semantically
interprets the user requests and directs the performance of
atomic actions. For example, the dialog manager (DM) may
interpret a user’s request to play a particular song, and in
response the dialog manager (DM) may direct the perfor-
mance of certain actions (a.k.a., “a plan”) necessary to play
the requested song on a associated MP3 player. In this regard,
the dialog manager (DM) may use one or more scripting
languages to direct performance of the plan. For example, the
dialog manager (DM) module 101aa may be specified via two
scripting languages: (1) a plan script that defines the atomic
actions or activities that the system is capable of performing,
and (2) an abstract dialog-scripting language (a.k.a. the dialog
move tree (DMT) script) that maps input sentence patterns to
basic dialog moves. In this regard, the plan script defines high
level complex dialog strategy and manages multiple dialog
sessions while the abstract dialog-scripting language script
(e.g., DMT script) defines atomic activities for a single dialog
session. Accordingly, the dialog state of the interaction
between the users and the dialog system 101 may be pre-
sented, for example, in the dialog move tree (DMT), an
example of which is shown in FIG. 7. The dialog state of the
interaction may also be presented as a graph or other suitable
structure or state machine.

Plan Engine

The plan engine 101ab executes plan scripts 103, which
define the atomic actions or sequence of atomic actions to be
performed to satisfy a particular user request in a particular
user dialog context. In this regard, the plan engine 101ab
activates certain processes, and collaborates with the dialog
manager (DM) module 101aa to provide reports to the user, to
ask questions and to obtain parameter values from the user.
When executing the plan script 103, the plan engine 101ab
works in parallel with the process engine 1024 to accomplish
the plan.

Process Engine

The process engine 102a executes process scripts 104 and
communicates with the plan engine 101ab using messages to
invoke services from the service pool. Here, the process
scripts, for example can be BPEL files. BPEL is short for
BPEL4WS (Business Process Execution Language for Web
services), which is a standard XML -based language designed
to accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services.

Service Pool

The service pool 1025 contains all the independently run-
ning services (e.g., credit card service, inventory service,
shipping service, user profile service and logging service),
which represent the participating services by various partners
in the sophisticated process.

Plan Engine Design

FIG. 2 shows an exemplary plan engine design 200, which
shows the interaction between the plan engine and the dialog
manager (DM)/dialog move tree (DMT), and between the
plan engine and the process engine. In particular, the plan
engine interacts with the dialog manager (DM)/dialog move
tree (DMT) to handle reporting and questions, and to obtain
activity parameter values. Here, the plan engine may interact
with the process engine using messages to perform the plan
activities. In this regard, the plan engine may employ the use
of an activity parameter stack, an activity stack, a message
queue, certain variables, a debug tree, and logging resources.

US 9,082,406 B2

7

The exemplary plan engine design 200 provides support
for the processing of the plan. In this context, a plan consists
of activities. For example, the flow of a “purchase” plan may
be described as follows:

A user identifies him/herself;,

A user selects a product to purchase;

The system checks if the product is available in inventory;

The system attempts to retrieve user information stored in
the customer database, such as a shipping address and
credit card number;

The system asks for address or credit card number infor-
mation from the user if the information is not available in
customer database;

The system charges the credit card; and

The system schedules the shipping.

The flow in the plan script 103 must satisfy the intrinsic
dependency of the steps specified in the process script 104.
For example, a user can identify him/herself either before or
after s/he selects a product in the plan script. However, the
plan script must collect the user information before it sends a
request to the process script to charge the credit card or
schedule the shipping.

The flow of process activities in the plan script 103 is
logically consistent with the flow of process script 104 so that
they can work together. For example, to check inventory, the
plan engine 101ab sends a message which contains a product
identifier to the process engine 102a. The process script 104
defines how to check the inventory and which service should
be invoked. Upon completion, the process engine 102a sends
a response message with the result back to the plan engine
101ab.

According to an exemplary embodiment of the present
invention, there are two groups of activities in plan script:
activities associated with the extended dialog manager
(DM+) 101a and activities with the process engine 102a. The
activities associated with the extended dialog manager
(DM+) 101 may include, for example, requesting the dialog
manager (DM) 101aa to provide a report to the user. Here, a
<report> element in the plan script 103 is mapped to a tem-
plate sentence defined in the dialog move tree (DMT) script.
In this regard, the plan engine 101ab creates a dialog move
tree (DMT) system node in the dialog move tree (DMT), and
thereafter the extended dialog manager (DM+) 101a outputs
the sentence to the user according to dialog move tree (DMT).
The activities associated with the extended dialog manager
(DM+) 101a may also include requesting the dialog manager
(DM) 101aa to ask questions. Here, a <question> element in
the plan script 103 is mapped to a template question defined in
the dialog move tree (DMT) script. The plan engine 101ab
will create a dialog move tree (DMT) system node in the
dialog move tree (DMT). The extended dialog manager
(DM+) 101a will ask the question, obtain the answer from the
user and inform the plan engine 101ab. The activities associ-
ated with the extended dialog manager (DM+) 101 may also
include requesting the dialog manager (DM) 101aa to obtain
activity parameter values from the user. Here, when the
atomic dialog move (corresponding to an atomic action) is
generated, it resolves the parameters associated with this
action by interacting with the user and forwards it to the plan
engine 101aéb.

Activities associated with the process engine 1024 may
include, for example, sending a message to the process engine
101a to invoke a service and get a reply. For each activity
which needs to be accomplished by the sophisticated process
in the process backend 102, the plan engine 101ab sends a
request message to the process engine 102a. The process
engine 102a will invoke a dedicated service from the service

10

15

20

25

30

35

40

45

50

55

60

65

8

pool 1025 for that request and reply back to the plan engine
101ab. The flow of the activities which are associated with the
process engine in the plan script 103 corresponds to the flow
of process script 104.

The plan engine 101ab connects the extended dialog man-
ager (DM) 101 and the process engine 102. It coordinates user
interaction with a sophisticated process by a simple yet pow-
erful scripting language. The plan script 103 works with both
the dialog move tree (DMT) script and the process script 104,
and encapsulates all the integration logic for the dialog sys-
tem 101 and the process backend 102. With customized plan
scripts 103, the extended dialog manager (DM+) 101qa is
flexible enough for language applications to combine with
various sophisticated processes in different domains.
Overall System Framework

FIG. 3 shows an exemplary system framework 300 of the
present invention, in which a dialog manager (DM) is
extended to handle complex processes. The exemplary sys-
tem architecture system framework 300 includes an extended
dialog manager (DM+) 301, a process engine 302, a service
pool 303, and one or more databases 104. The extended
dialog manager (DM+) 301 includes a dialog manager (DM)
301a and a plan engine 3015.

The plan engine 3015 is used to perform complex plans/
processes. A plan is described by a plan script which is inter-
preted by the plan engine 3015. The process engine 302
executes process scripts. Here, a process script is a process
which composes services in the service pool 303 to complete
a certain task. The plan engine 3015 can be seen as a client of
the process engine 302. The service pool 303 contains ser-
vices which are running independently.

The following example is used to explain each module.
Here, the example plan is a “purchase” task and the task flow
is described as follows:

1) The user identifies him/herself;

2) The user buys a product;

3) The system checks if the product is available in inven-

tory;

4) The system checks for user information in the customer
database, such as shipping address and credit card num-
ber;

5) The system gets an address or credit card number from
the user if they are not available;

6) The system charges the credit card; and

7) The system schedules the shipping.

Plan Engine

According to an exemplary embodiment of the present
invention, a plan consists of atomic activities. Here, there may
be two groups of activities: (1) activities associated with the
user (user activities) and (2) activities associated with the
process engine (process activities) 302.

User activities include providing a report to the user, asking
a question, and collecting information or answers. Process
activities include invoking the process engine 302 to perform
some service invocations.

The flow in the plan script must satisfy the intrinsic depen-
dency of the steps specified in the process script. For example,
a user can identify him/herself either before or after s/he
selects a product in the plan script. However, the plan script
must collect the user information before it sends a request to
the process script to charge the credit card or schedule the
shipping.

The flow of process activities in the plan script is logically
consistent with the flow of the process script so that they can
work together. For example, a process activity in the “pur-
chase” example may be “check inventory”. In response, the
plan engine 3015 sends a message which contains the product

US 9,082,406 B2

9

identifier to the process engine 302. The process script defines
how to check the inventory and which service should be
invoked. After the activity is performed, the process engine
302 sends a message back to the plan engine 3015, which
gives the result to it. From this point of view, the plan engine
3015 works as the client side of the process engine 302 and
the process engine 302 performs the actual service invoca-
tions.

Connection to the DM

The plan engine 3015 interacts with the atomic actions
specified/performed in the dialog manager (DM) 301a,
including:

(1) to request that the DM to send a report to the user,

(2) to request that the DM to ask the user a question and get
answer from the user, and

(3) to request that the DM to obtain information, such as
activity parameter values, from the user.

These aspects are explained below in further detail.
Providing a Report to the User

If'the plan engine 3015 needs to provide a report to the user
which is specified in the plan script, it creates a node in the
dialog move tree (DMT). In this instance, for example, the
plan engine 3015 may provide a report to the user for the
availability of the product. In particular, the plan script may
specify a <report> activity which corresponds to a system
node in dialog move tree (DMT) script to output a sentence to
the user. Thereafter, when the plan engine 3015 performs the
<report> activity, it will create a dialog move tree (DMT)
node and let the dialog manager (DM) 301a to output this
sentence to the user. An exemplary reporting plan script is as
follows:

<report dmtReport="“Report:buy:inventory” />.
The “Report:buy:inventory” may be defined in the DMT script as
following:
System Report:buy:inventory{
Output {
“Sorry, The item is not available now.”
¥

I

Ask a Question and Obtain an Answer

If the plan engine 3015 needs to ask the user a question
which is specified in the plan script, it creates a node in the
dialog move tree (DMT). For example, the plan engine 3015
may ask the user if he wants to pay by credit card. In this
regard, the plan script may specify a <question> activity
which corresponds to a system node in dialog move tree
(DMT) script to ask for Yes or No question and get confirma-
tion from user. Thereafter, when the plan engine 3015 per-
forms the <question™> activity, it will create a dialog move tree
(DMT) node and request the dialog manager (DM) 301a to
ask the question. The dialog manager (DM) 301a also gets the
answer from the user and informs the plan engine with the
answer. An exemplary question script is as follows:

<question dmtInput="“YNQuestionNoConfirm:ServiceCmd:buy:card”
outputVariable="ynAnswer”>
<mapping from="“card” to="“userinfoResponse.String_ 2” />
</question>

Here, the “YNQuestionNoConfirm:ServiceCmd:buy:
card” may be defined in the dialog move tree (DMT) script as
follows:

10

15

20

25

30

35

40

45

50

55

60

10

System YNQuestionNoConfirm:ServiceCmd:buy:card {
Output {
“Do you want to pay by your credit card [card]?”
¥
¥

Get Parameter Values from the User

The dialog manager (DM) 301a may resolve activity
parameters for the plan engine 3015. A parameter is a piece of
information that the plan engine 3015 receives from the user,
which may include, for example, a product identifier, ship-
ping address, credit card number, etc. To have the dialog
manager (DM) 301a resolve activity parameters, these
parameters are associated with atomic actions of dialog man-
ager (DM) 301a which are defined in the plan or process
activity script. Slots are attached to atomic actions. The slots
are parameters that need to be filled by the user. The dialog
manager (DM) 301a will resolve all the slots with the user and
forward them to the plan engine 3015. In this way, the plan
engine 3015 can utilize the dialog manager (DM) 301a to
resolve activity parameters for it

For example, three atomic dialog moves of dialog manager
(DM) 301a may be defined in the dialog move tree (DMT)
script: buyProduct, addAddress, addCard. The buyProduct
dialog move is used to resolve the identifier of the product, the
addAddress dialog move is used to get the address from the
user, and the addCard dialog move is used to get the credit
card number from the user. The dialog move tree (DMT)
script for each atomic dialog move defines the conversation
between the user and the dialog manager (DM) 301a to
resolve the slots.

After the user says “buy xxx”, the dialog manager (DM)
generates an atomic dialog move, attaches a node of buyProd-
uct to dialog move tree (DMT), and resolves the parameter of
product identifier. This node is then forwarded to the plan
engine 3015, which retrieves the purchase plan script and runs
it, and therefore the purchase process is started. During the
process, if the plan engine 3015 needs the shipping address
from the user which is specified by the plan script, it will
trigger the addAddress atomic move of the dialog manager
(DM) 301a. Then an addAddress node is attached to dialog
move tree (DMT), the parameter is resolved by the dialog
manager (DM) 301a, and the node is forwarded to the plan
engine 3015. The plan engine 3015 gets the shipping address
from the atomic action.

An exemplary dialog move tree (DMT) script for addAd-
dress action is as follows:

User ServiceCmd:addAddress{
Description “Add user address to the database”
Input {
useX =
“s{ predicate{#ship/vb}, ?adjunctlist{#to/in,pobj:shipAddress}}}”

Producing {
// Questions
System WHQuestion:fill:addAddress:shipAddress {
Output {
“Please give your address?”

Expecting {
CloseOn User Answer:np:add Address:shipAddress {
Input {

//ship address
shipX = “s{npfragment{#/nn:shipAddress}}
Syn(shipX)
My AddressIs(shipX)
ItIs(shipX)

US 9,082,406 B2

11

-continued

TheAddressIs(shipX)

¥
¥

CloseOn System Report:add Address:done {
Output {
“The address [address] is added to your profile.”
¥
¥
¥
¥

Here, the useX line in the Input section of the above script
specifies a pattern the input sentence should match. The plan
script which specifies that a shipping address is needed may
be as follows:

<subtask name="getaddr” nist_ task="addAddress” nist_ verb="ship”
inputVariable="updateAddrRequest”
outputVariable="update AddrResponse” >
<assign>
<copy>
<from slot="shipAddress™ />
<to variable=“updateAddrRequest” part="“String_ 2” />
</copy>
</assign>
</subtask>

The nist_task attribute defines the atomic action it is wait-
ing forto get the parameter. The nist_verb attribute defines the
verb which is used to trigger the atomic action. When the plan
engine performs this <subtask>, it first checks if the addAd-
dress atomic action is available or not. If it is not available, it
will use the verb to trigger it. After the atomic action is created
by the dialog manager (DM) 301a and the shipAddress slot is
resolved, the <copy> tag will copy the “shipAddress™ to a
variable in the plan script, so that the plan engine 3015 gets
the “shipAddress” parameter.

Connection to Process Engine

The plan engine 3015 and the process engine 302 should
work together to accomplish a complex task. Plan scripts and
process scripts are paired. The process activities in the pro-
cess script are actually the server to some activities in the plan
script.

For example, the plan script and process script may work
together to schedule the shipping. In the plan script, a ship-
ping Request is sent to the process engine 302. Here, the
shipping request may contain information about shipping
address. In the process script, it first receives a shipping
Request from the client (plan engine 3015), then invokes the
shipping service in the service pool, finally it replies to the
plan engine 3015 with a shipping Response which contains a
tracking number.

Design of the Plan Engine

FIG. 4 shows an exemplary architecture 400 of the plan
engine 3016 of FIG. 3. The exemplary architecture 400
includes a stack 401 for the atomic dialog moves issued from
the dialog manager (DM) 3014, an activity stack 402, a queue
403 for messages from the process engine, variables 404 for
the plan engine, and a debug tree 405. The activity stack 402
contains all the activities need to be performed by the plan
engine 3015. The plan engine 3015 obtains activities from
this stack 402 and executes them accordingly. The debug tree
405 provides debugging of the plan engine.

An exemplary operation of the plan engine 3015, in terms
of how the exemplary architecture 400 components interact

10

20

25

30

40

45

50

55

60

65

12

with the dialog manager (DM) 3014, the process engine 302,
and amongst themselves is as follows.

1) When the dialog manager (DM) 301q creates an atomic
move, it puts it into the dialog move tree (DMT) atomic
move stack 401.

2) When the plan engine 3015 hits a <subtask> activity or
<pick> activity which requires an atomic dialog move,
the plan engine 3015 looks through the dialog move tree
(DMT) atomic move stack 401 to check if the atomic
move is ready. If the required atomic move is not ready
and the current activity is <subtask> activity, the plan
engine 3015 triggers the atomic dialog move.

3) The plan engine 3015 requests the dialog manager (DM)
301a to give a report, ask a question or trigger an atomic
dialog move.

4) The process engine 302 sends back responses to the plan
engine 3015. Response messages are put into the queue
403.

5) The plan engine 3015 receives response messages from
the message queue 403 when a <subtask> activity
expects a response from the process engine 302

6) The plan engine 301a sends request messages to the
process engine 302 when <subtask> activities are
executed.

7) Variables in the plan engine 301q are defined in the plan
script. These variables 404 keep status information for
the plan engine 301a. The variables 404 are assigned
values by <assign> activities. Messages sent to the pro-
cess engine 302 are constructed from the variables 404.
The messages received from the process engine 302 are
used to update and/or modify the variables 404.

8) Each time the plan engine 3015 runs an activity, a debug
node for this activity will be created and put into the
debug tree 405. The debug tree 405 may be shown, for
example, in a debug panel so that the developer can see
the current state of the plan engine 3015. The variables
404 in the plan engine 3015 are also shown in the debug
tree 405.

Task Debug Panel

According to an exemplary embodiment of the present
invention, a debug panel is provided in the debug window to
show status of the running plan engine. Here, a debug node is
created for each execution of each activity in the script and
inserted into the debug tree.

Process Engine

The process engine is used to run process scripts. As
explained in detail above, the process engine works with the
plan engine. A process consists of activities. In this regard, a
process script may be, for example, a BPEL file which fol-
lows the syntax of Business Process Execution Language for
Web Services v1.1.

Design of the Process Engine

FIG. 5 shows an exemplary architecture of the process
engine 302 of FIG. 3. The exemplary architecture 500
includes an input message queue 501, an activity stack 502,
variables 503 for the process engine 302, and an output mes-
sage queue 504. The activity stack 502 contains all the activi-
ties need to be performed by the process engine 302. The
process engine 302 gets activities from this stack 502 and
executes them accordingly.

An exemplary operation of the process engine, in terms of
how the exemplary architecture 500 components interact with
the plan engine 3015, the services 303, and amongst them-
selves is as follows.

1) Messages from the plan engine 3015 are put into the

input message queue 501

US 9,082,406 B2

13

2) When the process engine 302 needs a message (such as
<receive> activity), it gets it from the input message
queue 501.

3) The process engine 302 invokes services from the ser-
vice pool 303.

4) When the process engine 302 sends back a message to
the plan engine 3015 (such as <reply> activity), the
message is put into the output message queue 504.

5) A thread is running to get messages out of the output
message queue 504 and send back messages to the plan
engine 3015.

6) Variables 503 in the process engine 302 are defined in the
process script. These variables 503 keep status informa-
tion for the process engine 302. The variables 503 are
assigned values by <assign> activities. Messages sent to
the services are composed from variables and messages
received from services are used to update and/or modity
the variables 503.

Service Manager

A service manager manages all the services and processes.
It parses all the service description files such as Web Service
Descriptive Language (WSDL)) files, and process scripts.
Service Pool

The service pool contains all the independently running
services.

Logging

All events in the system may be logged.
Process Script

According to an exemplary embodiment of the present
invention, a process script can be a business process file which
conforms to BPEL4AWS (Business Process Execution Lan-
guage for Web Services).

Plan Script

According to an exemplary embodiment of the present
invention, the language which defines plan scripts is in XML.
In this regard, the plan script may include an element <task>
as the top level tag that defines a plan which works with a
process script. An attribute of this element specifies the
atomic dialog move which will start this plan. For example,
the purchase plan is started by the atomic move “buyProduct”
of the dialog manager (DM) 301a.

The plan script may include an element <variables> to
define variables, as in the process script. The plan script may
include the <assign> element as in the process script and a
“slot” attribute in the <from> element which indicates the
value is copied from the slot of an atomic dialog move. If this
<assign> is imbedded into a <subtask> activity which
requires an atomic dialog move, the slots are associated with
this atomic action. Otherwise, the slots are associated with the
atomic action required by the top level <task>.

The plan script may also include a <report> element which
has an attribute to specify the report that the dialog manager
(DM) should speak to the user as defined in the dialog move
tree (DMT) script. A report can take parameters and map
parameters to values. The plan script may also include a
<question> element, which may have an attribute specifying
the confirmation question that the dialog manager (DM)
should ask the user. The question is defined in dialog move
tree (DMT) script. A question can take parameters and map
values to parameters.

The plan script may also include a <subtask> element, an
example of which is shown below:

<subtask name="getaddress™ nist_ task="add Address™ nist_ verb="ship”
inputVariable="update AddrRequest”

10

15

20

25

35

40

45

50

55

60

14

-continued

outputVariable="update AddrResponse” >
<assign>
<copy>
<from slot="shipAddress™ />
<to variable=“updateAddrRequest” part="String 2 />
</copy>
</assign>
</subtask>

The “nis_task™ attribute and the “nist_verb” attribute are
optional. If they exist, it means the <subtask> can require an
atomic action. When the plan engine executes <subtask>
activity and an atomic action is required, it checks the dialog
move tree (DMT) atomic move stack. If the atomic move is
not there, the engine will use a verb which is specified as a
<subtask> attribute to trigger the atomic move. It can also
specify sending a message to the process engine and getting a
response from the process engine.

The <assign> activity can be embedded into the <subtask>
activity. When a slot value is to be copied from a dialog move
tree (DMT) atomic action which is required by the <subtask>
activity, it is embedded into the <subtask> activity.

The plan script may also include the <pick> element and
multiple <onTask> sub-elements, one of which will be cho-
sen. When the plan engine executes the <pick> activity, it will
check the dialog move tree (DMT) atomic action stack and
execute activities under that <onTask> tag. Which branch is
executed depends on which dialog move tree (DMT) atomic
action is found in the dialog move tree (DMT) task stack and
which is the newest.

A Combined Approach

FIG. 8 shows an exemplary method 800 for extending a
dialog system to process application activities, such as a web
service and/or business transaction. The dialog system may
include, for example, a dialog manager to manage the con-
versation between the system and the user, and a plan engine
to better facilitate the connection of atomic actions of the
dialog manager with a process backend that provides the
external interface to the web service and/or business transac-
tion. The exemplary method is as follows:

In step S801 a conversation between the dialog system and
a user is managed. Here, for example, the incoming user
requests and utterances may be interpreted semantically, and
a history and current context of the conversation may be
maintained, so that the dialog system may interact with the
user in a more natural manner. In this regard, the dialog
system may pose a question to the user, and/or may obtain one
or more parameter values from the user.

In step S802 the conversation is associated with a complex
activity. As explained in detail above, a “complex activity” is
an activity (i.e., a reusable behavior with a domain) that may
be conceptually divided into sub-activities, whereas an
“atomic activity” is a conceptually simple activity which
cannot be further divided into sub-activities. In particular, the
conversation is associated with a complex dialog activity,
which in turn, may relate to one or more atomic dialog activi-
ties that are stored by the dialog system as conversational
threads. In this regard, the complex activity may be specified
via a declarative activity specification language that connects
atomic dialog activities with a process, which is related, for
example, to the web service and/or a business process.

In step S803 a plan script is executed in connection with the
complex activity. In this instance, the plan script may include
a set of atomic dialog activities and corresponding order
constraints of the atomic dialog activities, with the set of
atomic dialog activities including sub-activities of the com-

US 9,082,406 B2

15

plex activity. The plan script may be executed in conjunction
with a process script that is executed in connection with the
process. The process script includes a set of atomic process
activities and corresponding order constraints of the atomic
process activities, the set of atomic process activities being
sub-activities of the process. In this regard, the process script
may conform to a standard XML -based language designed to
accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services. In particular, the process script may conform to
BPEL4WS (Business Process Execution Language for Web
Services).

In step S805, an appropriate action is performed. Here, for
example, the appropriate action might be an operation related
to a particular a device, such as a car radio or navigation
system. Upon completion of the appropriate action a report
may be provided to the user, which indicates the action is
complete and/or that further action may be required.

The exemplary message embodiments and/or exemplary
methods described herein may be implemented in the general
context of computer-executable instructions, such as program
modules, executed by one or more computers or other
devices. Generally, program modules include routines, pro-
grams, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types.
The functionality of the program modules may be combined
or distributed as desired in various embodiments.

An implementation of the exemplary embodiment and/or
exemplary methods may be stored on or transmitted across
some form of computer readable media. Computer readable
media can be any available media that can be accessed by a
computer. By way of example, and not limitation, computer
readable media may include computer storage media and
communications media.

What is claimed is:

1. A dialog system that uses a dialog move tree to manage
a conversation between the dialog system and a user, com-
prising:

adialog manager to associate the conversation with a com-

plex activity; and

aplan engine to execute a plan script in connection with the

complex activity, the plan script including a set of atomic
dialog activities and logic to control a data and sequence
flow of the atomic dialog activities, the set of atomic
dialog activities being sub-activities of the complex
activity,

wherein:

the dialog move tree forms a structured history of dialog
moves performed by the dialog system and the user in
the conversation;

the dialog manager dynamically adds to the dialog move
tree a node for each occurrence of an atomic dialog
activity of the set of atomic dialog activities; and

the complex activity is specified via a declarative activ-
ity specification language that connects the atomic
dialog activities with a process.

2. The dialog system of claim 1, wherein the process is
related to at least one of a web service and a business process.

3. The dialog system of claim 2, wherein the plan engine is
configured to interact with a process engine that executes a
process script in connection with the process, the process
script including a set of atomic process activities and corre-
sponding order constraints of the atomic process activities,
the set of atomic process activities being sub-activities of the
process.

4. The dialog system of claim 3, wherein the plan script
defines a sequence of a combination of the set of atomic

10

15

20

25

30

35

40

45

50

55

60

65

16

dialog activities and a set of triggers for triggering the process
engine to execute portions of the process script.

5. The dialog system of claim 4, wherein the plan script
defines activities via tags that include an element for assign-
ing to a variable a value copied from a slot of a dialog move.

6. The dialog system of claim 5, wherein the tags are XML
tags that hierarchically define the activities.

7. The dialog system of claim 4, wherein the plan script
hierarchically defines activities via tags that include an ele-
ment for assigning to various hierarchical levels of the hier-
archically defined activities a value copied from a slot of a
dialog move.

8. The dialog system of claim 7, wherein the tags are XML
tags.

9. The dialog system of claim 4, wherein the plan script
defines activities via tags that include an element for selecting
between various activities depending on a newest node
included in the dialog move tree.

10. The dialog system of claim 9, wherein the tags are
XML tags that hierarchically define the activities.

11. The dialog system of claim 3, wherein the process
script conforms to a standard XML -based language designed
to accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services.

12. The dialog system of claim 3, wherein the process
script conforms to BPEL4WS (Business Process Execution
Language for Web Services).

13. The dialog system of claim 1, wherein the dialog man-
ager is configured to interpret semantically incoming user
requests and utterances, and perform an appropriate action on
a device controlled by the dialog system.

14. The dialog system of claim 1, wherein the dialog man-
ager is configured to maintain a history and current context of
the conversation.

15. The dialog system of claim 14, wherein the dialog
manager maintains the history and current context via a struc-
ture to store the atomic dialog activities as conversational
threads.

16. The dialog system of claim 1, wherein the dialog man-
ager is configured to at least one of provide a report to a user,
ask a question, and obtain a parameter value from the user.

17. The dialog system of claim 1, wherein the dialog move
tree represents a dynamic state of interactions between the
user and the dialog system.

18. The dialog system of claim 1, wherein each time the
user inputs an utterance with which the dialog manager asso-
ciates a new complex activity that includes at least one atomic
dialog activity, the dialog manager adds at least one node in
the dialog move tree, each one of the at least one node corre-
sponding to a respective one of the at least one atomic dialog
activity.

19. The dialog system of claim 1, wherein each time the
dialog system responds to a user request associated with a
new complex activity that includes at least one atomic dialog
activity, the dialog manager adds at least one node in the
dialog movement tree, each one of the at least one node
corresponding to a respective one of the at least one atomic
dialog activity.

20. The dialog system of claim 1, wherein the set of atomic
dialog activities for which representative nodes are dynami-
cally added to the dialog move tree includes (a) an activity
corresponding to a user utterance associated with a previous
or new complex activity and (b) an activity corresponding to
a speech output by the dialog system according to the plan
script.

US 9,082,406 B2

17

21. The dialog system of claim 1, wherein:

the nodes are hierarchically organized in the dialog move
tree, and

for each of at least a subset of the nodes of the dialog move
tree, dialog manager determines to which of plurality of
dialog moves represented by nodes previously added to
the dialog move tree the respective node relates, and
adds the respective node as a child of the determined
node.

22. The dialog system of claim 21, wherein the dialog 10

manager refers to the dialog move tree for applying a context
to a received user utterance and to determine a speech con-
struct to output.

23. The dialog system of claim 21, wherein the dialog
manager determines that a node is related as a child to another
node by determining that a dialog move to which the node
corresponds is provided as a response to a dialog move to
which the another node corresponds.

24. The method of claim 1, further comprising:

at least one of providing a report to a user, asking a ques-

tion, and obtaining a parameter value from the user.

25. A dialog system that uses a dialog move tree to manage
a conversation between the dialog system and a user, com-
prising:

adialog manager to associate the conversation with a com-

plex activity, the dialog manager being configured to
interpret semantically incoming user requests and utter-
ances, and perform an appropriate action on a device
controlled by the dialog system; and

aplan engine to execute a plan script in connection with the

complex activity, the plan script including a set of atomic
dialog activities and logic to control a data and sequence
flow of the atomic dialog activities, the set of atomic
dialog activities being sub-activities of the complex
activity;

wherein:

the dialog move tree forms a structured history of dialog
moves performed by the dialog system and the user in
the conversation;

the dialog manager dynamically adds to the dialog move
tree a node for each occurrence of an atomic dialog
activity of the set of atomic dialog activities;

the complex activity is specified via a declarative activ-
ity specification language that connects the atomic
dialog activities with a process related to at least one
of'a web service and a business process; and

the plan engine is configured to interact with a process
engine that executes a process script in connection
with the process, the process script including a set of
atomic process activities and corresponding order
constraints of the atomic process activities, the set of
atomic process activities being sub-activities of the
process, the process script conforming to BPEL4AWS
(Business Process Execution Language for Web Ser-
vices).

20

25

30

35

40

45

50

18

26. The dialog system of claim 25, wherein the dialog move
tree represents a dynamic state of interactions between the
user and the dialog system.

27. A method for extending a dialog system to process
application activities by using a dialog move tree to manage a
conversation between the dialog system and a user, the
method comprising:

associating the conversation with a complex activity; and

executing a plan script in connection with the complex

activity, the plan script including a set of atomic dialog

activities and logic to control a data and sequence flow of

the atomic dialog activities, the set of atomic dialog

activities being sub-activities of the complex activity;

wherein:

the dialog move tree forms a structured history of dialog
moves performed by the dialog system and the user in
the conversation;

the dialog manager dynamically adds to the dialog move
tree a node for each occurrence of an atomic dialog
activity of the set of atomic dialog activities; and

the complex activity is specified via a declarative activ-
ity specification language that connects the atomic
dialog activities with a process.

28. The method of claim 24, wherein the dialog move tree
represents a dynamic state of interactions between the user
and the dialog system.

29. The method of claim 27, wherein the process is related
to at least one of a web service and a business process.

30. The method of claim 29, wherein the plan script is
executed in conjunction with a process script that is executed
in connection with the process, the process script including a
set of atomic process activities and corresponding order con-
straints of the atomic process activities, the set of atomic
process activities being sub-activities of the process.

31. The method of claim 30, wherein the process script
conforms to a standard XMI -based language designed to
accomplish tasks across multiple organizations in a distrib-
uted computing environment using a combination of Web
services.

32. The method of claim 30, wherein the process script
conforms to BPEL4WS (Business Process Execution Lan-
guage for Web Services).

33. The method of claim 27, further comprising:

semantically interpreting incoming user requests and utter-

ances; and

performing an appropriate action on a device.

34. The method of claim 27, further comprising:

maintaining a history and a current context of the conver-

sation.

35. The method of claim 34, further comprising:

storing the atomic dialog activities as conversational

threads.

